
www.ecography.org

ECOGRAPHY

Ecography

Page 1 of 15

This is an open access article under the terms of the Creative Commons 
Attribution License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited.

Subject Editor:  
F. Guillaume Blanchet 
Editor-in-Chief: Miguel Araújo 
Accepted 1 June 2023

doi: 10.1111/ecog.06674

2023

1–15

2023: e06674

© 2023 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society 
Oikos

Early warning signals (EWSs) represent a potentially universal tool for identifying 
whether a system is approaching a tipping point, and have been applied in fields 
including ecology, epidemiology, economics, and physics. This potential universality 
has led to the development of a suite of computational approaches aimed at improving 
the reliability of these methods. Classic methods based on univariate data have a long 
history of use, but recent theoretical advances have expanded EWSs to multivariate 
datasets, particularly relevant given advancements in remote sensing. More recently, 
novel machine learning approaches have been developed but have not been made 
accessible in the R (www.r-project.org) environment. Here, we present EWSmethods – 
an R package (www.r-project.org) that provides a unified syntax and interpretation of 
the most popular and cutting edge EWSs methods applicable to both univariate and 
multivariate time series. EWSmethods provides two primary functions for univariate 
and multivariate systems respectively, with two forms of calculation available for each: 
classical rolling window time series analysis, and the more robust expanding window. 
It also provides an interface to the Python machine learning model EWSNet which 
predicts the probability of a sudden tipping point or a smooth transition, the first of 
its form available to R (www.r-project.org) users. This note details the rationale for 
this open-source package and delivers an introduction to its functionality for assessing 
resilience. We have also provided vignettes and an external website to act as further 
tutorials and FAQs.
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Background

Natural systems are inherently non-linear and consequently 
challenging to forecast (Bradley and Kantz 2015, Pace et al. 
2015). This has led to the application of dynamic system 
theory which aims to provide model-free and generic tools 
to identify approaching non-linearity (Scheffer  et  al. 2009, 
Clements and Ozgul 2018, Drake et al. 2019). The majority 
of this work has attempted to detect critical slowing down 
(CSD), a phenomenon displayed by systems as they approach 
a bifurcation or ‘tipping point’ (Kuehn 2011, Strogatz 2015). 
In brief, CSD manifests when, as the distance to the tipping 
point decreases, the ability of the system to recover from 
perturbations and return to its average trend also decreases 
(Wissel 1984). This stems from the dominant eigenvalue of 
the system trending towards zero and results in successive 
snapshots in time being more similar than if the system was 
far from a tipping point; in practical terms, successive abun-
dance/biomass measurements in time or space begin to cor-
relate more strongly. 

Detecting CSD can be as simple as tracking the temporal 
change in summary statistics. For example, increasing auto-
correlation at lag-1 (Dakos et al. 2010), increasing variance 
(Carpenter and Brock 2006), increasing skewness (Guttal 
and Jayaprakash 2008) and kurtosis (Biggs et al. 2009) are 
all representative of CSD. In univariate data, each of these 
have been successful in identifying oncoming tipping points 
in simulated experiments (Dakos  et  al. 2012b, Kéfi  et  al. 
2013) as well as empirical lake regime shifts (Biggs  et  al. 
2009, Carpenter et al. 2011), boreal forest loss (Rogers et al. 
2018), disease (re)emergence (Harris et al. 2020, O’Brien and 
Clements 2022), and psychopathology (McSharry et al. 2003, 
Schreuder et al. 2020). The popularity and scope of EWSs is 
consequently expanding to new applications (Cailleret et al. 
2019) and multivariate data sources (Weinans  et  al. 2021, 
Baruah et al. 2022) to maximise the utility of the approach 
with the increasingly large amounts of ecological monitoring 
data now available (Meinson et al. 2015, Jucker et al. 2017, 
Besson  et  al. 2022). There is therefore a general desire to 
exploit EWSs in both traditional research and policy decision 
making as evidenced by the rapid increase in the publication 
and citation of EWS literature per year. 

Multivariate forms of EWSs (Weinans  et  al. 2019, 
Lever et al. 2020, Medeiros et al. 2022) and deep learning 
models (Bury et al. 2021, Deb et al. 2022) are of particular 
interest as they appear superior tools to the univariate signals 
described above. Multivariate approaches exploit information 
from multiple measurements of a shared system (e.g. mul-
tiple species in an ecosystem or multiple sensors in a combus-
tion engine) to provide an overall signal of system resilience. 
Pooling information in this way buffers against the uncer-
tainty of choosing which data source should be assessed. For 
example, the trophic level of EWS assessment influences 
the strength of signal observed in simulated communities 
(Patterson et al. 2021), and whilst the authors provide guid-
ance on the optimum species/time series to monitor, the 
required information to identify those time series may not be 

available to empirical users. Multivariate EWSs can therefore 
provide a naïve yet robust assessment for multivariate data in 
the absence of complete information.

Similarly, CSD may not be the only signature of systems 
close to a tipping point. Our identification of the phenome-
non stems from linear stability analysis (LSA) of mathematical 
models (Ludwig et al. 1978, Scheffer et al. 2009), but machine 
learning tools can identify other phenomenological features 
not detected from LSA. For example, machine learning mod-
els trained upon transitioning data outperform equivalent 
models trained upon the EWSs of the same transitioning data 
(Deb et al. 2022). This is indicative of alternative features being 
more informative than CSD to warrant general usage, although 
the ‘black-box’ nature of the approach limits its accountability 
(Enni and Herrie 2021). This being said, multiple machine 
learning models are now available for transitioning systems 
that improve the transparency of predictions by training on 
simple mathematical models associated with LSA (Bury et al. 
2021, Deb et al. 2022). These models can consequently build 
upon our foundational knowledge of tipping points by taking 
advantage of the biases inherent in their training.

Currently, neither multivariate nor machine learn-
ing approaches have functionality for R (www.r-project.
org) users and resultingly there is a need for simple tools 
to interact with the variety of EWS approaches available to 
researchers. Certain EWS functionality has previously been 
provided by the earlywarnings R package (www.r-project.org, 
Dakos et al. 2012a), however the package is limited to one 
form of EWS calculation (rolling windows) in univariate data 
only. There have also been advances using alternative meth-
odologies such as expanding window and composite EWSs, 
which introduce data in an add-one-in fashion to provide a 
standardised time series of EWS strength (Drake and Griffen 
2010, Clements and Ozgul 2016). This second approach 
improves the reliability of EWS predictions in univariate 
data (Southall et al. 2022) but is not currently available in an 
easy-to-use form. Unfortunately, many of the custom func-
tions written to facilitate this research are limited to the sub-
scription MATLAB product (MathWorks 2022) or hidden 
in publications’ supplementary information (e.g. composite 
EWSs – Clements et al. 2019, O’Brien and Clements 2022). 
In combination, this has limited the accessibility of EWS 
development to the wider community. 

Compiling these various functions in to a single and com-
prehensive R package (www.r-project.org) whilst rectifying 
computational errors is required to increase reproducibility 
of empirical ecological tipping point research and improve 
the interpretation and visualisation of results. We therefore 
designed the EWSmethods R package (www.r-project.org) to 
provide a suite of ‘user-friendly’ functions to predict critical 
transitions across both univariate and multivariate data sources 
and provide interpretable graphics. For univariate data, such 
as local fisheries or country level disease cases, EWSs can be 
estimated using either the rolling window approach of early-
warnings or the expanding window approach of Drake and 
Griffen (2010). The package also provides the user the capabil-
ity to query the Python based EWSNet deep learning model 
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(Deb et al. 2022) in the R (www.r-project.org) environment 
and generate predictions on the time series’ future. Thirdly, 
if multiple measurements have been made of a single system 
– such as when monitoring multiple species in the same com-
munity – multivariate EWSs can be estimated using either 
rolling or expanding window approaches. And finally, EWS 
distinct resilience metrics can also be estimated for univariate 
and multivariate data following the work of Ushio et al (2018) 
and Grziwotz et al (2023). EWSmethods therefore represents a 
compilation of new and existing tools to support this expand-
ing field in an easy to use and interpret form. A comparison 
of the features EWSmethods provides vs the currently available 
earlywarnings package is provided in Table 1.

In this paper, we first describe the theory underpinning 
the methods used and the features of the EWSmethods pack-
age. We then highlight the practical use of the three modules 
to predict forthcoming transitions using a simulated multi-
species dataset.

Methods and features

Time series data is the foundation of system monitoring and 
forecasting, leading to a massive diversity of time series fore-
casting methods and models developed to analyse them (De 
Gooijer and Hyndman 2006). CSD based indicators (i.e. the 
early warning signals (EWSs)) are no exception but require 
less technical expertise than traditional forecasting techniques 
(Dakos et al. 2015). This simplicity in calculation holds for 
both univariate and multivariate assessments.

Univariate early warning signals

EWSs developed for univariate data are the simplest form of 
CSD assessment and thus have received the most research 
effort. Table 2 describes the most common EWSs, all of which 
are provided in EWSmethods via the uniEWS function, and 
how they are calculated. Each of these are also provided in the 
earlywarnings package and mathematically described in detail 
(Dakos et al. 2012a). The development that EWSmethods pro-
vides over that package is the diversity of approaches used to 
compute these EWSs beyond those available in earlywarnings, 
allowing users to tailor their analyses to support their use case. 

This primarily involves the choice of rolling versus expanding 
windows during calculation (Fig. 1).

Rolling windows

The rolling window approach partitions the univariate time 
series of interest into a window of data points within which 
each indicator is estimated. The window then ‘rolls’ along the 
time series one data point at a time to update the indicator 
estimate and generate a new time series of EWSs (Fig. 1a). 
From this EWS time series, the Kendall’s tau correlation of 
the EWS against time is used to generate ‘warnings’ (Fig. 1b). 
Specifically, if a strong tau correlation is found, this indicates 
an oncoming transition. The uniEWS function allows the 
user to specify the window size as a percentage of the time 
series’ length and returns both the time series of EWSs and 
the estimated Kendall’s tau to be interpreted. 

Expanding windows

The alternative to the above computation differs by assess-
ing change in an expanding window via a composite metric 
consisting of multiple indicators (Fig. 1c). The same EWS 
indicators as above are available to the expanding window 
approach (Table 2), but each indicator is standardised by sub-
tracting its expanding mean from its calculated value at time 
t. This value is then normalised by division by its expanding 
standard deviation (Drake and Griffin 2010) – at each time 
point, the prediction is updated (Fig. 1d). A composite metric 
can then be constructed by summing all individual indicator 
values calculated per t. The resulting indicator value or score 
is hereafter referred to as ‘strength’. If the indicator strength 
exceeds a threshold value, then a ‘signal’ has been identified. 
Typically, this threshold value is 2σ which is approximately 
equivalent to a 95% confidence interval and performs favour-
ably compared to other threshold levels (Clements and Ozgul 
2016, Clements et al. 2017). 

The expanding window approach also allows multiple infor-
mation sources to contribute to the assessment. For example, 
including body size estimates improves assessment reliability 
by reducing false positive rate whilst increasing the number 
of true positives (Clements and Ozgul 2016, Baruah  et  al. 
2020). uniEWS consequently accepts a trait argument where 

Table 1. Comparison of supported features between the EWSmethods and earlywarnings R packages (www.r-project.org).

Feature earlywarnings EWSmethods

Rolling window early warning signals – univariate time series ✓ ✓
Expanding window early warning signals – univariate time series ✗ ✓
Rolling window early warning signals – multivariate time series ✗ ✓
Expanding window early warning signals – multivariate time series ✗ ✓
Machine learning model (EWSNet) – univariate time series ✗ ✓
Maximum likelihood model-based approaches – univariate time series ✓ ✗
Detrended frequency analysis and potentials – univariate time series ✓ ✗
Sensitivity analysis – univariate time series ✓ ✗
Fisher information, Jacobian estimates, etc – univariate and multivariate time series ✗ ✓
Time series detrending ✓ ✓
Time series deseasoning ✗ ✓
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an additional trait time series can be combined with the other 
‘abundance-based’ EWSs as a composite metric.

Furthermore, the EWSs assessed using the expanding win-
dow approach can be improved using a consecutive signal 
strategy (Clements et al. 2019, Southall et al. 2022) where 
a ‘warning’ is only acknowledged when two or more signals 
are identified in a row. Southall and colleagues (2022) have 
recently showed that using this approach results in earlier and 
more reliable warnings over the rolling window approach.

Multivariate early warning signals

The second module contained in EWSmethods is the expan-
sion of EWSs to multivariate data. The benefit of using mul-
tivariate techniques over univariate is that assessments of 
stability and proximity to tipping points can be performed 
at the system/community level rather than being constrained 
to the population level. Many of these multivariate EWSs 
have been tested and supported by Weinans  et  al. (2021) 

Table 2. Description of the univariate early warning signal indicators provided by EWSmethods and their origin in the literature.

Indicator Description Reference

SD (Standard Deviation) Increasing variance/standard deviation is observed approaching a transition, driven 
by critical slowing down (CSD)

Carpenter and Brock 
(2006)

CV (Coefficient of 
Variation)

Equivalent to SD as is simply SD at time t divided by the mean SD of the time series Carpenter and Brock 
(2006)

AR1 (Autocorrelation at 
lag1)

Autocorrelation (similarity between successive observations) increases approaching a 
transition, due to CSD. The value of this indicator can be estimated as either the 
autocorrelation coefficient estimated from a first order autoregressive model or the 
estimated autocorrelation function at lag1

Held and Kleinen 
(2004)

Skewness At a transition, the distribution of values in the time series can become asymmetric. 
This is skewness and can increase/decrease depending on the size of the 
alternative state

Guttal and 
Jayaprakash (2008)

Kurtosis Kurtosis represents the system reaching more extreme values in the presence of a 
transition. Due to the increased presence of rare values in the time series, the tails 
of the observation distribution widen

Biggs et al. (2009)

Return rate The inverse of the first-order term of a fitted autoregressive AR(1) model. Return rate 
is the primary quantity impacted by CSD – return rate decreases as a tipping point 
is approached

Carpenter et al. 
(2011)

Density ratio Spectral reddening (high variance at low frequencies) occurs near transition. The 
density ratio quantifies the degree of reddening as the ratio of the spectral density 
at low frequency to the spectral density at high frequency

Kleinen et al. (2003)

Figure 1. Visual representation of the difference between rolling and expanding window approaches to calculating early warning signals 
(EWSs – A vs C) in a hypothetical transitioning time series. Solid bars indicate the changing window. Panels B and D then indicate the 
quantity that represents a ‘warning’. For rolling windows (A, B), this warning is a strong Kendall’s tau correlation of EWS indicator values 
with time. Whereas, for expanding windows (C, D) a warning occurs when the standardised EWS value exceeds a 2σ threshold.
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but open-source tools to calculate them remain unavailable. 
EWSmethods consequently provides multivariate EWS calcu-
lation via the multiEWS function. 

There are two forms of EWS indicators appropriate for 
multivariate data: those averaged across all time series rep-
resenting the system of interest (Dakos 2018), and those 
calculated from a dimension reduction (Held and Kleinen 
2004, Weinans et al. 2019). The former is a simple technique 
to implement using just uniEWS but can be influenced by 
outlier time series, whereas the latter can display informa-
tive properties not identifiable in individual time series 
(Weinans et al. 2021). Unfortunately, their theoretical rela-
tionship with CSD is less well understood. EWSmethods and 
the multiEWS function therefore provides 12 multivariate 
indicators across both averaging and dimension reduction 
forms, each of which is described in Table 3.

Parameterisation of multiEWS is identical to uniEWS 
apart from the lack of capability for composite EWSs. This 
is due to it being currently unknown how combining multi-
variate EWS indicators influences their prediction reliability. 
Rolling and expanding windows are still available for multi-
variate EWSs and their interpretation remains the same as 
their univariate equivalents. 

Machine learning model – EWSNet

The third EWSmethods module is an interface to the Python 
based EWSNet, a deep learning modelling framework for 
predicting critical transitions and tipping points (Deb et al. 

2022). EWSNet consists of coupled long short-term memory 
and fully convolutional network sub-module routines, which 
together extract complex non-linear patterns from inputted 
time series to provide forecasts on the likelihood of oncoming 
tipping points. Details on the precise formulation and model 
structure can be found at Deb et al. (2022) and https://ews-
net.github.io, whereas here we will focus on the application 
of EWSNet for ecologists and the setup of the R (www.r-
project.org) environment to cooperate with EWSNet's 
Python backend. 

The rationale behind EWSNet stems from the rapid suc-
cess and widespread adoption of machine learning algo-
rithms and their ability for learning patterns from data 
(Humphries  et  al. 2018). EWSNet exploits this ability by 
training models upon the simple non-linear mathematical 
models pioneered by ecological dynamic system research 
(Ludwig  et  al. 1978, Fraedrich 1978, Cheng  et  al. 2008, 
Scheffer  et  al. 2012, Kéfi  et  al. 2013). Specifically, these 
models encompass four forms of transition/tipping point - 
saddle-node (fold), pitchfork, supercritical Hopf, transcriti-
cal (Fig. 2a) – and include non-transitions to allow EWSNet 
to identify periods of stability. This combination of training 
results in three possible EWSNet predictions: critical transi-
tion, smooth transition or no transition. To aid interpreta-
tion of these predictions in real world systems, we suggest 
that a critical transition indicates oncoming sudden non-
linearity, a smooth transition indicates a directional change 
in trend, and no transition indicates stability as outlined  
in Fig. 2b. 

Table 3. Description of the multivariate early warning signal indicators provided by EWSmethods, their origin in the literature and which 
signal category they belong to.

Indicator Description Reference
Averaging or dimension 
reduction technique

Mean SD (Standard Deviation) Average variance across all time series 
representing the system

Dakos (2018) Average

Max SD The variance of the time series with the highest 
variance of all assessed time series

Dakos (2018) Average

Mean AR1 (Autocorrelation at lag1) Average autocorrelation across all time series 
representing the system

Dakos (2018) Average

Max AR1 The autocorrelation of the time series with the 
highest autocorrelation of all assessed time 
series

Dakos (2018) Average

Dominant MAF (maximum 
autocorrelation factor) eigenvalue

The minimum eigenvalue of the system following 
MAF dimension reduction

Weinans et al. 
(2019)

Dimension reduction

MAF AR1 The autocorrelation of the data projected on to the 
first MAF – i.e. the autocorrelation of the first 
MAF

Weinans et al. 
(2019)

Dimension reduction

MAF SD The variance of the data projected on to the first 
MAF – i.e. the variance of the first MAF

Weinans et al. 
(2019)

Dimension reduction

First PC (principal component) AR1 The autocorrelation of the data projected on to the 
first PC – i.e. the autocorrelation of the first PC

Held and Kleinen 
(2004)

Dimension reduction

First PC SD/ Explained variance The variance of the data projected on to the first 
PC – i.e. the variance of the first PC

Held and Kleinen 
(2004)

Dimension reduction

Dominant eigenvalue of the 
covariance matrix

The maximum eigenvalue of the covariance matrix 
between all representative time series

Chen et al. (2019) Neither

Maximum covariance The maximum value of the covariance matrix 
between all representative time series

Suweis and 
D’Odorico (2014)

Neither

Mutual information A measurement of multi-information or how much 
each time series informs on the others

Quax et al. (2013) Neither
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With machine learning tools limited for R (www.r-project.
org) users, and EWSNet written in the Python language, the 
reticulate R package (www.r-project.org, Ushey et al. 2022) 
allows EWSmethods to call the Python functions required 
to load EWSNet and make predictions from user data. 
EWSmethods prepares the user’s R (www.r-project.org) ses-
sion to perform this interfacing via the ewsnet_init function. 
ewsnet_init loads a previously created Python environment 
with the Python packages required by EWSNet, or installs 
Python and initialises a new environment if either Python 
or the environment is not found. Due to the large file sizes 
being downloaded at this stage, ewsnet_init is verbose by 
default and requires user input to confirm that Python, the 
required packages, and environment should be downloaded 
and/or installed.

Users can then use ewsnet_predict to generate EWSNet 
predictions on a time series of interest. To date, EWSNet 
only supports only univariate time series, however the mul-
tivariate form of EWSNet is under active development. The 
current version of EWSNet also differs to that of the original 
authors by being robust to time series of variable length. This 
involved retraining using randomly sampled subsets of the 
data, ranging in length from 15 to 400 data points to better 
support the shorter time series available to empirical ecolo-
gists. Similarly, due to the variable magnitudes of ecologi-
cal measurements, two sets of EWSNet’s training weights are 
provided in EWSmethods, scaled vs unscaled (ewsnet_reset 
is required to download them); scaled models rescale the 
input data into the range 1–2. We recommend using scaled 

weights as they result in more conservative model predictions 
(O’Brien  et  al. 2023). ewsnet_predict then returns a pre-
diction probability for each of the three potential outcomes 
ranging from 0.0–1.0. As EWSNet was trained on three pos-
sible outcomes, a probability of ~ 0.33 indicates all predic-
tion outcomes are equally likely (1.0 divided by 3 equals ~ 
0.33). Therefore, its authors suggest any probability greater 
than 0.33 implies a stronger than chance prediction and any-
thing greater than 0.6 warrants serious scrutiny (Deb et al. 
2022). 

To summarise, EWSNet characterises the current dynam-
ics of the observed time series relative to the various transition 
types on which it has been trained. From this training data, 
the model interprets the probability of the time series’ trajec-
tory belonging to each transition type. Estimated probability 
is therefore not the probability of transition in the future, but 
the probability that the time series shares characteristics of a 
transitioning time series.

Interpretation

EWSs are potentially powerful tools for managers. However, 
their interpretation can be complex and requires nuance. This 
is particularly true for rolling window approaches and EWSNet 
as it remains unclear what constitutes a ‘strong’ correlation 
or prediction probability. We however believe there are three 
approaches to defining an appropriate warning using EWSs. 
Firstly, a user may refer to a reference period for a baseline 
correlation, or track change in the strength of a signal through 

Figure 2. Visual representation of the four models EWSNet was trained (A) and their associated outcome in empirical time series (B). In 
panel A, the shaded region represents the period of transition with hatched lines indicate the new system trajectory. In panel B balls repre-
sent the position of the system of interest in a one dimensional stability landscape.
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time (as in the expanding window approach above), where 
deviations from the general trend are informative. The sec-
ond requires the user to define how conservative an assessment 
they require. For example, if the negative consequence of a 
transition is significantly larger than the consequence of acting 
upon a false positive, then a lower confidence warning may be 
appropriate (i.e. a low Kendall’s tau coefficient/EWSNet pre-
diction probability). And finally, the third requires comparing 
the observed signal to a distribution of signals generated via 
permutation of the original time series. If the observed sig-
nal is in the top x-th quantile of the distribution (the 95th 
quantile is commonly used) then a warning may be identi-
fied. The EWSmethods function perm_rollEWS provides this 
functionality, allowing the user to generate surrogate time 
series using three alternative permutation techniques: random 
sampling without replacement from the original time series 
(Theiler et al. 1992), simulation of an ARIMA model best fit-
ting the original time series (Theiler et al. 1992, Dakos et al. 
2008), or from a stochastic red noise process of equal auto-
correlation to the original time series (Kang et al. 2014). The 
resulting surrogates are therefore representative of the assessed 
non-cyclical time series. Alternatively, a fourth option is appli-
cable for EWSNet following the original authors’ suggestions, 
where a probability larger than 0.33 (the chance that all out-
comes are equally likely) is indicative of an approaching tran-
sition (Deb et al. 2022). 

Resilience measures

Thus far, each of the described techniques assume that 
the system is at equilibrium when the stress begins to act. 
In ecological systems, this assumption is not likely to hold 
(Davidson et al. 2023) and so an alternative school of thought 
suggests quantifying resilience change itself rather than CSD 
may be more appropriate in such cases (Dakos et al. 2015). 
We consider resilience to be the ‘capacity of system to per-
sist and maintain its state and functions in the face of exog-
enous disturbance’ (Hodgson et al. 2015), and consequently 
consists of two major components: the ability to resist and 
recover from disturbance (Pimm 1984). EWSmethods pro-
vides a fourth module containing one univariate resilience 
indicator (uniJI) and three multivariate ones (multiJI, FI 
and mvi) to estimate equilibrium free resilience change. To 
clarify, these methods are not EWSs but will be informative 
prior to a bifurcation as resilience is expected to decline as the 
tipping point is approached (Wissel 1984).

The functions uniJI and multiJI exploit S-map recon-
struction to estimate the system’s Jacobian under the empiri-
cal dynamic modelling (EDM) framework (Ushio et al. 2018, 
Medeiros  et  al. 2022, Grziwotz  et  al. 2023). EDM builds 
upon Takens theorem (Takens 1981), which suggests that if 
all interacting elements of a system can be simultaneously 
measured (all species, environmental variables, interaction 
and response strengths etc), then the evolution of the state of 
the system can be known. Unfortunately, it is unrealistic to 
achieve this is in empirical systems. If, however, time-delayed 
relationships between representative time series are estimated 

over a range of embedding dimensions E and lags (τ), it is 
possible to reconstruct a ‘shadow’ attractor that is topologi-
cally invariant to the true system trajectory (Sugihara et al. 
2012). As the reconstructed attractor is invariant, the math-
ematical features of the true attractor are maintained, and 
one can extract information on the system’s stability.

In our case, the Jacobian is interesting as tipping/bifurcation 
points occur when the dominant eigenvalue passes through zero 
from negative to positive (Strogatz 2015). It is this event that 
drives the phenomenon of CSD but the increase of dominant 
eigenvalue towards zero in general represents resilience loss. 
Technically, the EDM derived Jacobian is estimated around 
the attractor and therefore is not a direct analogue of the lin-
ear stability analysis derived Jacobians, which are informative 
around a bifurcation point, but does convey the advantage of 
estimating local Lyapunov stability. A system at equilibrium is 
said to be Lyapunov stable if its trajectories originating in the 
neighbourhood of an equilibrium point (or state) remain in the 
same neighbourhood (Strogatz 2015). Local Lyapunov stabil-
ity is informative under both equilibrium and non-equilibrium 
states but does not have the same rigorous mathematical back-
ground as bifurcation theory. uniJI and multiJI calculate local 
Lyapunov stability (i.e. the dominant Jacobian eigenvalue) in a 
rolling window along the data and returns the estimate. If this 
estimate exceeds one, the system is unstable, while below one, 
it is stable. We therefore also expect that as proximity to a tip-
ping point increases, so too will the index.

The primary difference between the univariate and multi-
variate form of local Lyapunov stability/Jacobian index pro-
vided by EWSmethods involves the target of embedding. The 
univariate index time embeds the focal time series against itself 
(Grziwotz et al. 2023) whereas the multivariate embeds across 
all species/time series (Ushio et al. 2018, Medeiros et al. 2022). 
The multivariate index is therefore sensitive to the choice of 
time series included in the reconstruction (Ushio et al. 2018), 
and the number of time series used must equal E. This limits 
the minimum length of uninterrupted time series required by 
multiJI at E (equal to number of measured species) + 1. The 
univariate index is consequently suggested to be superior if 
the system is not well measured (Grziwotz et al. 2023).

Multivariate alternatives to EDM-derived resilience mea-
sures exploit changing covariance between the measured 
time series over time. Fisher information (calculated by 
FI) estimates the amount of information data can provide 
on an unmeasured parameter (Fisher and Russell 1922). 
EWSmethods provides a simplified discrete time form of 
Fisher and Russel (1922)’s mathematic proof following 
Karunanithi et al. (2008):

FI » -[ ]
=

+å4
1

1
2

i

m

i iq q

where qi
2 is the amplitude of the probability of observing 

states of the system at time window i, and m is the num-
ber of possible states. States are defining by comparing the 
difference between temporally adjacent data windows to a 
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reference ‘uncertainty’. If the absolute difference in density 
is less than the reference deviation for all time series, then 
the windows are binned in to the same state. We recommend 
that this uncertainty (a.k.a ‘size-of-states’) is defined as the 
variance of each time series in a reference period or across 
the entire time series. Decreasing Fisher information conse-
quently represents decreasing resilience.

And finally, the multivariate index of variability (MVI) is 
calculated as the square root of the dominant eigenvalue of 
the covariance matrix of all species by the function mvi. It 
was suggested by Brock and Carpenter (2006) as representa-
tive of resilience/stability loss as an extension of the univari-
ate CSD indicator – variance. Therefore, akin to the variance 
EWS, increasing MVI represents decreasing resilience.

Example

We can illustrate the four modules of the EWSmethods pack-
age using one of the two datasets bundled with the package: 
simsTransComms. simsTransComms contains three repli-
cate communities of five species each, simulated from a com-
petitive Lotka–Volterra model following Dakos (2018). Each 
community is driven through a tipping point by increasing 
the carrying capacity of a low density species which mimics 
the appearance of an invasive species in the community. The 
time index of the tipping points is provided in the inflec-
tion_pt column. It is key to truncate this data set to only 
contain data prior to this tipping point for EWSs to have any 
meaningful value as a sentinel of transition (Dale and Beyeler 
2001, Gsell  et  al. 2016). This can be achieved using the 
inflection_pt column of the simTransComms$community3 
community. First, we must however load the package and the 
simTransComms dataset:

library(EWSmethods)
data(simTransComms)
pre_simTransComms <- subset(simTrans 
Comms$community3,time < inflection_pt)

This represents the data frame we will use for the 
remainder of this example section (Fig. 3). More detailed 
examples are available at: https://duncanobrien.github.io/
EWSmethods/articles/ews_assessments, https://duncano-
brien.github.io/EWSmethods/articles/using_ewsnet and 
https://duncanobrien.github.io/EWSmethods/articles/
resilience_measures.

Early warning signals

To calculate univariate EWS for any one time series from this 
community, we would use uniEWS. We first need to select 
the EWS indicators of interest to provide to the metrics argu-
ment. Autocorrelation (‘ar1’) and variance (represented by 
the standard deviation - ‘SD’) are the most commonly used 
EWSs and have the largest body of research defining their 
best utility (Carpenter and Brock 2006, Dakos et al. 2012b, 
Patterson et al. 2021). Using these metrics, we then choose 
the time calculation approach (expanding), the resulting 
burn in period (50 data points) and the sigma threshold (2). 
uniEWS only performs assessments on univariate data but 
requires a two column data frame where the first column is an 
equally spaced time vector and the second is the time series to 
be assessed. We have chosen the third species here.

expanding_ews_eg <- uniEWS(data = pre_
simTransComms[,c(2,5)],
  metrics = c("ar1","SD"),
  method = "expanding",
  burn_in = 50,
  threshold = 2)
plot(expanding_ews_eg,
y_lab = "Density")

The resulting ggplot (Wickham 2016) (Fig. 4) called by 
plot shows that warnings are generated from timepoint 171 
onwards for all EWSs following multiple consecutive ‘signals’. 
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Figure 3. The simulated simTransComms$community3 community plotted against time. Species 4’s carrying capacity is gradually increased 
within the time interval 100–200 (as represented by the expanding wedge) to mimic the appearance of an invasive species. This drives a 
community transition with the inflection point indicated by a vertical dashed line.
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The single signal for the ‘ar1 + SD’ indicator at timepoint 115 
is not sufficient to be a warning.

To expand the assessment to include information from all 
time series, we require the use of multiEWS. The single dif-
ference in the function’s parameterisation is that the input 
data frame must contain more than two columns (one time 
sequence column and two or more time series). By default, all 
indicators are returned.

To compute multivariate EWSs using the rolling method, 
the function would be written as thus, specifying the method 
and winsize as a percentage of the time series’ length:

multi_ews_eg_roll <- multiEWS(data = pre_
simTransComms[,2:7],
  method = "rolling",
  winsize = 50)

plot(multi_ews_eg_roll)

All indicators are positively correlated with time (exclud-
ing mafSD) but the strength of correlation varies (mean 
tau = 0.55, Fig. 5). However, each indicator does increase 
prior to transition even if this is not universally represented 
in the tau coefficients. 

Rolling window EWSs are hampered in that the strength 
of Kendall tau is ultimately arbirtary without a reference, and 
the overlapping windows renders typical significance tests 
inappropriate (Dakos et al. 2012a). However, using pseudo-
random surrogate time series representative of the focal time 
series, and estimation of the relatively strength of correlation 
can be calculated. To achieve this in EWSmethods, we can 
use perm_rollEWS, specifying the method of permutation 

to be a red noise process, the number of permutations to be 
500 and the approach to be multivariate:

perm_ews_eg_roll <- perm_
rollEWS(data = pre_simTransComms[,2:7],
  metrics = c("meanAR","maxAR","meanSD",
  "maxSD","eigenMAF","mafAR",
  "mafSD","pcaAR","pcaSD",
  "eigenCOV","maxCOV","mutINFO"),
  variate = "multi",
  perm.meth = "red.noise",
  winsize = 50,
  iter = 500)
print(perm_ews_eg_roll$EWS$cor)
  meanAR  maxAR   meanSD  maxSD eigen-

MAF mafAR
tau   0.8705002 0.6423562 0.769051 

0.4824684 0.7812062 0.6517064
perm_pvalue  0.0000000 0.0060000 

0.000000 0.1620000 0.0440000 0.0120000
   mafSD pcaAR    pcaSD  eigenCOV max-

COV mutINFO
tau   -0.1584853 0.6998597 0.5357644 

0.5357644 0.658719 0.2130467
perm_pvalue   0.4580000 0.0040000 

0.0020000 0.0020000 0.000000 0.0820000

Using surrogate data, we can see that most indicators are 
in the top 95% of surrogate correlation strengths (p-values 
less than 0.05) and so we can reject the null that these cor-
relations are spurious.
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Figure 4. Expanding window assessment of species three in the pre_simTransComms dataset using the univariate autocorrelation and vari-
ance early warning signal indicators. The figure is a direct output of the EWSmethods plot S3 method on an uniEWS generated object. The 
top panel depicts the raw time series and the presence of a signal from the annotated indicator. The lower panel visualises the strength of 
each indicator through time and the threshold level. A signal is indicated when the indicator strength exceeds this threshold value.
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To perform the assessment process using expanding win-
dows, multiEWS simply requires a change of method argu-
ment and the provision of burn in and threshold.

multi_ews_eg_expand <- 
multiEWS(data = pre_simTransComms[,2:7],
  method = "expanding",
  burn_in = 50,
  threshold = 2)

plot(multi_ews_eg_expand)

Warnings are generated throughout this assessment with 
two consistently signalled periods at timepoints 110 and 175 
(Fig. 6). This highlights the usefulness of expanding windows 
over rolling as the exact time point of warning can be deter-
mined, but supports Weinans et al.’s (2021) suggestion that 
there is no superior multivariate EWS indicator; the best fit 
depends on the scenario the system is subject to.

EWSNet

EWSNet requires initialisation using ewsnet_init due to its 
Python backend. At the start of each R (www.r-project.org) 

session, ewsnet_init must be called and a consistent envname 
provided. When the function is run for the first time on a 
new machine, Python will be downloaded alongside the criti-
cal Python packages and a new environment (envname) cre-
ated. The user will be prompted to agree to this by default 
(when the auto argument is FALSE) to ensure the files will not 
be accidentally downloaded if undesired. For future sessions, 
providing the same envname will result in the original envi-
ronment being activated rather than redownloading all files.

ewsnet_init(envname = "EWSNET_env", pip_
ignore_installed = FALSE, auto = FALSE)

The large file size of the model weights (~220mb) also 
means that EWSmethods does not come bundled with them. 
The user is required to call the ewsnet_reset function which 
will prompt confirmation that the weights are to be down-
loaded from https://ewsnet.github.io. 

ewsnet_reset(remove_weights = FALSE)

Once initiated, ewsnet_predict will accept a vector time-
series (note no time sequence is required) alongside the model 
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figure is a direct output of the EWSmethods plot S3 method on a multiEWS generated object. The top panel plots the raw dimension reduc-
tions from which certain indicators are estimated. The lower panel visualises the trend in each indicator through time and reports the 
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weights to use. These model weights are subset based on scal-
ing (scaled vs unscaled) and the number of models to average 
over (ensemble). We recommend using scaled weights aver-
aged over the maximum ensemble size (25) for most robust 
predictions.

ewsnet_prediction <- ewsnet_
predict(x = pre_simTransComms[,5], 
scaling = TRUE, ensemble = 25, 
envname = "EWSNET_env")
print(ewsnet_prediction)
pred    no_trans_prob smooth_trans_

prob  crt_trans_prob
Critical Transition  0.196918    

0.1813867    0.6216951

A critical transition has subsequently been predicted with 
a 62% probability indicating that a sudden tipping point is 
imminent.

Resilience measures

Each resilience measure is returned by a unique function but 
share the similar parameterisation as uniEWS and multi-
EWS. Slight differences are available for uniJI, multiJI and 

FI regarding the time delay embedding and tightening level 
respectively. FI also requires an additional argument specify-
ing the vector of size-of-states. We can estimate each measure 
for our community as so.

multi_JI_eg <- multiJI(data = pre_
simTransComms[,2:7], winsize = 50, 
scale = TRUE)
uni_JI_eg <- uniJI(data = pre_

simTransComms[,c(2,5)], winsize = 50, 
E = 1, scale = TRUE)
mvi_eg <- mvi(data = pre_simTrans-

Comms[,2:7], winsize = 50)
sost_eg <- t(apply(pre_simTrans-

Comms[,3:7], MARGIN = 2, FUN = sd))
#transpose required to ensure a 1 x 

n matrix of size-of-states to be taken 
by `FI`
fi_eg <- FI(data = pre_simTrans-

Comms[,2:7], sost = sost_eg, winsize = 50, 
TL = 90)$FI

Figure 7 resultingly shows the trend of each resilience mea-
sure prior to the tipping point and relative to the increasing 
stress. All measures other than Fisher information increase 
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Figure 6. Expanding window assessment of the entire pre_simTransComms community using multivariate early warning signal indicators. 
The figure is a direct output of the EWSmethods plot S3 method on a multiEWS generated object.
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prior to the tipping point with the multivariate Jacobian 
index displaying trends earliest. Similarly, the univariate 
Jacobian index also reaches 1.0 at the tipping point, match-
ing its conceptual behaviour in Grziwotz et al. (2023). Fisher 
information does not, however, qualitatively decrease prior to 
the tipping point though this may stem from an inappropri-
ate window size or size-of-state.

Conclusion

The ability to use accessible and easy to interpret tools 
are key for ecological monitoring. In this note we present 
EWSmethods, an R package (www.r-project.org) consolidat-
ing the simplest methods of EWS assessments into a coherent 
suite of metrics and visualisations. Each function is consistent 
in its parameterisations, terminology, and output to allow 
any user to interpret the assessment confidently, regardless of 
the data dimensionality or EWS approach.

It would however be remiss to overlook the pivotal 
earlywarnings package and work of Dakos  et  al. (2012a). 
EWSmethods innovates on earlywarnings by providing alter-
native calculations (rolling vs expanding windows) and data 
types (univariate vs multivariate), but does not provide the 
additional modelling techniques earlywarnings supports 
(diffusion-drift-jump models, BDS tests etc). We direct 
readers to that package on CRAN (https://cran.r-project.
org/web/packages/earlywarnings) for the typical univariate 
rolling window EWS approach due to the additional mod-
elling capabilities it provides. EWSmethods better supports 
multivariate analyses and standardises across univariate 
EWSs, multivariate EWSs and machine learning models to 
allow comparability. It also provides access to purpose-built 

machine learning models not otherwise available to R 
(www.r-project.org) users. Consequently, users are able to 
explore an ensemble of generic forecasting methods to iden-
tify oncoming transitions and tipping points in their system. 
Alternatively, if the reader is more interested in explicitly 
forecasting a time series future, then we suggest the EWS 
package (https://cran.r-project.org/web/packages/EWS) for 
a frequentist approach, or the work of Laitinen et al. (2021) 
for a probabilistic, as an alternative framework to those pre-
sented here.

Generic approaches also facilitate wider research interest 
into the universal challenge of identifying oncoming tipping 
points. Resilience-based approaches are critical for the man-
agement of globally imperilled systems (Folke  et  al. 2010, 
Oliver et al. 2015, Capdevila et al. 2022) but are applicable in 
other disciplines. Remotely sensed data could allow global level 
tipping point assessments for example (Forzieri et al. 2022), 
individual mortality risk may be detectable (Cailleret  et  al. 
2019) or positive thresholds can be encouraged (Lenton et al. 
2022). The low barrier to entry that EWSmethods provides for 
R (www.r-project.org) users can aid the development of these 
developing research avenues.

To cite EWSmethods or acknowledge its use, cite this 
Software note as follows, substituting the version of the appli-
cation that you used for ‘ver. 1.1.2’:
O’Brien D. A. et al. 2023. EWSmethods: an R package to forecast 

tipping points at the community level using early warning sig-
nals, resilience measures, and machine learning models. – Ecog-
raphy 2023: e06674 (ver. 1.1.2).

Acknowledgements – We thank the two anonymous reviewers for 
their suggestions which greatly improved the quality of both the 
software and the manuscript.
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